logosticky-logologologo
  • Home
    • Archiv
  • Partner Profile
  • Neue Ausgabe PDF
  • Mediadaten
✕

Krebserkrankungen über die Atemluft erkennen
Unsere Atemluft enthält Informationen, die sich für die Diagnostik von Krankheiten nutzen lassen. Forscherinnen und Forscher am Fraunhofer-Projektzentrum für Mikroelektronische und Optische Systeme für die Biomedizin MEOS entwickeln Lösungen, die künftig die Analyse der Atemluft ermöglichen. Bei ihren Forschungsarbeiten fokussieren sie sich auf das frühzeitige Erkennen von Krebserkrankungen. Aber auch die Unterscheidung zwischen COVID-19 und anderen Atemwegsinfektionen ist denkbar.
Manche Krankheiten kann man riechen. Ein leicht süßlich-fruchtiger Acetongeruch etwa deutet auf Diabetes hin. Bereits im antiken Griechenland berichteten Ärzte, Krankheiten im ausgeatmeten Atem zu erkennen. Die charakteristischen Gerüche entstehen durch spezifische flüchtige organische Verbindungen (VOC). Diese werden durch die erkrankten Gewebe oder die Krankheitserreger selbst freigesetzt, noch bevor Symptome auftreten.

Die Ausatemluft – Fingerabdruck des menschlichen Stoffwechsels

»Bei einer Vielzahl von Erkrankungen verändert sich die Zusammensetzung der flüchtigen organischen Spurengase in der Atemluft, die als Biomarker verwendet werden können. Oftmals sind es Kombinationen aus mehreren Spurengasen in einer deutlich erhöhten oder deutlich erniedrigten Konzentration, die charakteristisch für eine bestimme Krankheit sind. Man spricht hier auch von einem VOC-Fingerprint oder einem Muster an VOCs«, erläutert Dr. Jessy Schönfelder, Wissenschaftlerin am Fraunhofer MEOS. Am Projektzentrum in Erfurt arbeiten die Fraunhofer-Institute für Zelltherapie und Immunologie IZI, für Photonische Mikrosysteme IPMS und für Angewandte Optik und Feinmechanik IOF interdisziplinär zusammen.

Solche Marker-Kombinationen gibt es für sehr viel mehr Krankheiten als bisher bekannt. Sie müssen Stück für Stück entschlüsselt werden. Darin bestehe auch die Herausforderung für die Chemikerin und ihr Team. Sie entwickeln ein spezielles Ionenmobilitätspektrometer (IMS), um solche Muster an VOCs zu erkennen. Keine leichte Aufgabe, bedenkt man, dass jeder Mensch etwa 200 VOCs in der Atemluft hat. Im Mittelpunkt der Forschung stehen Krebsleiden, insbesondere Lungenkrebs.
Ziel des Forscherteams am Fraunhofer MEOS ist es, mit der neuen Technologie eine große Bandbreite an Biomarkern zu detektieren. Künftig wollen die Forscher das Mess-system auch zum Unterscheiden von COVID-19 und anderen Atemwegsinfektionen nutzen. Es kommt auch im Fraunhofer Clusterprojekt M3Infekt zum Einsatz, das die Entwicklung eines modularen, multimodalen und mobilen Monitoringsystems zum schnellen Eingreifen bei plötzlichen Zustandsverschlechterungen von COVID-19 Patienten zum Inhalt hat. Des weiteren soll die Atemanalytik künftig erste Hinweise auf neurodegenerative Erkrankungen wie Alzheimer liefern – und zwar früher und angenehmer als bisherige Methoden wie die Blutabnahme – schließlich muss der Patient nur in ein Röhrchen pusten.

»Das Potenzial der Atemluftsensorik ist groß. Die nicht invasive IMS-Technologie ist sensitiv und selektiv, schnell, kostengünstig und zudem klein und mobil, sodass sie problemlos in Arztpraxen und Krankenhäusern eingesetzt werden kann. Das fertige System wird die Größe eines Schuhkartons haben«, sagt Schönfelder.

FAIMS-Chip mit alternierender Spannung

Herzstück des neuartigen Ionenmobilitätsspektrometers ist ein miniaturisierter FAIMS-Chip (High Field Asymmetric Ion Mobility Spectrometry). Das MEMS-Bauelement umfasst einen Ionenfilter und einen Detektor. Eine UV-Lampe komplettiert das Gerät. Zunächst werden die VOCs in einem Trägergasstrom in das Spektrometer gepumpt, wo sie im nächsten Schritt mit Hilfe des UV-Lichts ionisiert werden. Das heißt, sie werden zu geladenen Molekülen. »Diese leiten wir an den FAIMS-Chip weiter, der am Fraunhofer IPMS entwickelt wurde. Anschließend legen wir an die Filterelektroden eine alternierende Spannung an. Durch das Einstellen der Spannung am Filter kann man auswählen, welche VOCs zum Detektor gelangen. Auf diese Weise erhalten wir unser VOC-Fingerprint, anhand dessen wir die Erkrankung erkennen können«, erklärt Schönfelder das Verfahren.

Derzeit arbeitet das Forscherteam an einer optimierten elektronischen Steuerung und einer verbesserten Probenentnahme und –Probenführung. Referenzmessungen an Zell-kulturen wurden erfolgreich durchgeführt, weitere Untersuchungen mit humanen Proben aus der Klinik sind geplant. Am Fraunhofer IZI konnten in einem abgeschlossenen Projekt bereits sieben verschiedene Bakterienstämme mit einer ähnlichen Technologie unterschieden werden.

Darüber hinaus sollen eigens entwickelte KI-Algorithmen die Auswertung der VOC-Fingerprints erleichtern. »Pro Messung erhalten wir eine halbe Million Messwerte. Diese hohe Datenmenge wollen wir per Machine Learning auswerten«, so die Forscherin. Der Algorithmus wird mit Proben von gesunden Probanden und Krebspatienten trainiert. Das Messergebnis liegt innerhalb weniger Minuten vor. »Wir können uns auch vorstellen, dass unser Ionenmobilitätspektrometer in Zukunft zum Screening von Fluggästen eingesetzt wird, um zu prüfen, ob sie mit dem Coronavirus infiziert sind«, so die Chemikerin.

Related posts

Künstliche Intelligenz


Lesen Sie mehr

Zukunftstudie zur Pandemieprävention


Lesen Sie mehr

Mobility Consumer Index


Lesen Sie mehr

Höheres Pflegerisiko für Personen mit geringen Einkommen


Lesen Sie mehr

Deutliche Mehrheit will weniger Zucker in Fertiglebensmitteln


Lesen Sie mehr

Moderner Fünfkampf ohne Reiten


Lesen Sie mehr

Deutsche Wirtschaft


Lesen Sie mehr

Mikroplastik auf dem Acker vermeiden


Lesen Sie mehr

Corona-Hunde und Wühltischwelpen belasten Tierheime


Lesen Sie mehr

  Foto: rechts: Antje Damerau

Zum 87. Geburtstag des Jahrhundertkünstler Udo Jürgens


Lesen Sie mehr

Was verbindet Udo Jürgens Fans mit Bäumen an der Prager Spitze in Dresden?


Lesen Sie mehr

Durstiges Deutschland


Lesen Sie mehr

Finanzinvestoren tätigen Rekordzahl an Deals in Deutschland


Lesen Sie mehr

Mit Quantencomputing zur personalisierten Krebstherapie


Lesen Sie mehr

Klimawandel, Vielfalt und Gerechtigkeit:


Lesen Sie mehr

Kommunalfinanzen und Corona: Neue Haushaltskrisen drohen


Lesen Sie mehr

Impfung wirkt – auch ohne Kopfschmerz oder Fieber


Lesen Sie mehr

Demokratie in der EU Wie zufrieden sind die Bürger?


Lesen Sie mehr

Warum Menschen Lebensmittel wegwerfen


Lesen Sie mehr

Auf dem Weg zur Klimaneutralität: Plastikrecycling muss stärker in den Fokus rücken


Lesen Sie mehr
© 2019 dermonat Impressum | Datenschutz
Cookie-Zustimmung verwalten
Wir verwenden Cookies, um unsere Website und unseren Service zu optimieren.
Funktional Immer aktiv
Die technische Speicherung oder der Zugang ist unbedingt erforderlich für den rechtmäßigen Zweck, die Nutzung eines bestimmten Dienstes zu ermöglichen, der vom Teilnehmer oder Nutzer ausdrücklich gewünscht wird, oder für den alleinigen Zweck, die Übertragung einer Nachricht über ein elektronisches Kommunikationsnetz durchzuführen.
Vorlieben
Die technische Speicherung oder der Zugriff ist für den rechtmäßigen Zweck der Speicherung von Präferenzen erforderlich, die nicht vom Abonnenten oder Benutzer angefordert wurden.
Statistiken
Die technische Speicherung oder der Zugriff, der ausschließlich zu statistischen Zwecken erfolgt. Die technische Speicherung oder der Zugriff, der ausschließlich zu anonymen statistischen Zwecken verwendet wird. Ohne eine Vorladung, die freiwillige Zustimmung deines Internetdienstanbieters oder zusätzliche Aufzeichnungen von Dritten können die zu diesem Zweck gespeicherten oder abgerufenen Informationen allein in der Regel nicht dazu verwendet werden, dich zu identifizieren.
Marketing
Die technische Speicherung oder der Zugriff ist erforderlich, um Nutzerprofile zu erstellen, um Werbung zu versenden oder um den Nutzer auf einer Website oder über mehrere Websites hinweg zu ähnlichen Marketingzwecken zu verfolgen.
Optionen verwalten Dienste verwalten Verwalten von {vendor_count}-Lieferanten Lese mehr über diese Zwecke
Einstellungen anzeigen
{title} {title} {title}