Mit Künstlicher Intelligenz Lebensmittelverschwendung reduzieren
In Deutschland landen jedes Jahr rund zwölf Millionen Tonnen Lebensmittel im Abfall. Mehr als 30 Prozent davon werden bereits während des Herstellungsprozesses vernichtet. Im Projekt REIF setzt sich das Fraunhofer-Institut für Gießerei-, Composite- und Verarbeitungstechnik IGCV gemeinsam mit Partnern gegen diese Lebensmittelverschwendung ein. Mit Künstlicher Intelligenz sollen die Verluste gesenkt werden. Denn auch Käse, Brötchen, Fleisch und Co. lassen sich mit datenbasierten Algorithmen effizienter herstellen, Absatz- und Produktionsplanung, Prozess- und Anlagensteuerung können mit Methoden des Maschinellen Lernens optimiert werden.In Deutschland landen jedes Jahr rund zwölf Millionen Tonnen Lebensmittel im Abfall. Mehr als 30 Prozent davon werden bereits während des Herstellungsprozesses vernichtet. Im Projekt REIF setzt sich das Fraunhofer-Institut für Gießerei-, Composite- und Verarbeitungstechnik IGCV gemeinsam mit Partnern gegen diese Lebensmittelverschwendung ein. Mit Künstlicher Intelligenz sollen die Verluste gesenkt werden. Denn auch Käse, Brötchen, Fleisch und Co. lassen sich mit datenbasierten Algorithmen effizienter herstellen, Absatz- und Produktionsplanung, Prozess- und Anlagensteuerung können mit Methoden des Maschinellen Lernens optimiert werden.
Deutschland hat sich dem Ziel der Vereinten Nationen verpflichtet, die Lebensmittelverschwendung bis zum Jahr 2030 zu halbieren. Der Handlungsbedarf ist groß, denn bis zu zwölf Millionen Tonnen Lebensmittel landen hierzulande im Müll, und zwar entlang der gesamten Wertschöpfungskette vom Acker bis zum Teller. Rund 52 Prozent der Abfälle verursachen Privathaushalte. Dies ergab eine Studie des Thünen-Instituts von 2019. Die Studie offenbart jedoch auch, dass rund 30 Prozent der Verluste bereits in der Lebensmittelproduktion und -verarbeitung entstehen. Die restlichen 18 Prozent entfallen auf den Groß- und Einzelhandel und die Außer-Haus-Verpflegung. Im Projekt REIF, das für Resource-Efficient, Economic and Intelligent Foodchain steht, arbeiten 30 Partner an einer langfristigen Lösung. Hauptaugenmerk liegt dabei auf der Konzeption eines KI-Ökosystems, das Beteiligte aller Wertschöpfungsstufen einbezieht. Das Bundesministerium für Wirtschaft und Energie BMWi fördert das Vorhaben mit zehn Millionen Euro.
Überproduktion minimieren und Ausschuss vermeiden
Die Ursachen vermeidbarer Abfälle sind vielfältig. Sie reichen von Überproduktion über Schwankungen der Rohstoffqualität bis hin zu optischen Anforderungen, die die Lebensmittel nicht erfüllen. Die REIF-Projektpartner fokussieren sich auf Molkereiprodukte, Fleisch- und Backwaren. Verluste entstehen bei diesen Produkten vor allem, da es sich um leicht verderbliche Waren handelt. »Um die Lebensmittelverluste in diesen Bereichen deutlich zu senken, sind vor allem zwei Aspekte entscheidend – die Minimierung von Überproduktion und die Vermeidung von Ausschuss«, sagt Patrick Zimmermann, Wissenschaftler am Fraunhofer IGCV und Mitarbeiter im Konsortium. Gemeinsam mit Philipp Theumer und fünf weiteren Kollegen untersucht er, wie sich unternehmensinterne Potenziale – beispielsweise in Maschinen und Anlagen sowie die Produktionsplanung und -steuerung – im Sinne der Verschwendungsreduktion mit Methoden der KI realisieren lassen. »Wir bringen dabei KI in die gesamte Wertschöpfungskette und insbesondere in den Bereich der Produktion. Dafür adaptieren und selektieren wir die entsprechenden Algorithmen je nach Anwendungsfall«, so Zimmermann. Die Plan- und Steuerbarkeit aller Bereiche – von der Erzeugung in der Landwirtschaft bis zum Verkauf im Supermarkt – werden hinsichtlich ihres Optimierungspotenzials untersucht. »Überproduktion und Ausschuss lassen sich vermeiden, indem man Lebensmittelbedarfe zielführend prognostiziert, die Plan- und Steuerbarkeit der Wertschöpfungsprozesse verbessert und qualitätsbedingte Lebensmittelverluste verringert«, ergänzt Theumer.Die Potenziale seien jedoch sehr unterschiedlich. Dies verdeutlicht Zimmermann am Beispiel eines Fleischmischers. »Die Temperatur und die Dauer des Mischvorgangs beeinflussen das Mindesthaltbarkeitsdatum der Fleischwaren. Indem wir mit KI-Algorithmen den Energieeintrag durch den Mischprozess minimieren, können wir das Mindesthaltbarkeitsdatum verlängern und dadurch die Verkaufszeit im Supermarkt optimieren und Lebensmittelverluste reduzieren«. Auf Anlagenebenen entsteht die höchste Lebensmittelverschwendung beim Hochfahren, da die optimalen Parameter erst gefunden werden müssen und somit zunächst Ausschuss produziert wird. »Beispielsweise versuchen wir, mittels intelligenter Sensorik und selbstlernenden KI-Algorithmen den Aufschäumvorgang bei der Herstellung von Kuchenböden gleich beim ersten Versuch zu perfektionieren«, erklärt der Forscher.
Verknüpfte Informationen für alle Glieder der Lebensmittelkette
Langfristig wollen die Projektpartner von REIF ein IT-Ökosystem etablieren und einen virtuellen Marktplatz aufsetzen. Unternehmen können hier in Zukunft unter anderem ihre implementierten KI-Algorithmen allen Beteiligten zur Verfügung stellen. Ein weiteres Ziel ist es, die Daten aller im Projekt involvierten Firmen zu vernetzen, um so die Wertschöpfung im komplexen Wertschöpfungsnetzwerk der Lebensmittelindustrie zu steigern. »Das Know-how einer Firma kann auf andere übertragen werden. Je mehr Daten ein- und zurückfließen, desto besser wird das KI-Modell trainiert«. Über den Online-Marktplatz haben die Projektpartner die Möglichkeit, ihre Daten auszutauschen. Produktionsunternehmen können damit ihre Herstellungsprozesse besser steuern, indem sie von Absatzprognosen profitieren, die basierend auf Einkäufen erstellt wurden. Die von Supermärkten erhobenen Daten fließen in die Prognosen ein. Durch das Zusammenführen vielfältiger Faktoren wie Kundenverhalten, Warenbestand und Mindesthaltbarkeitsdatum lassen sich gezielt dynamische Preisanpassungen für bestimmte Produkte in Supermärkten einführen. »Durch eine kontinuierliche, tägliche Preisanpassung (je nach Haltbarkeit) können die üblichen drastischen Preissenkungen kurz vor Ablauf des Mindesthaltbarkeitsdatums vermieden werden und die Verkaufszeit erhöht sich. Dadurch ist es wahrscheinlicher, dass das Produkt gekauft wird, bevor es entsorgt werden muss und auch der Gesamtgewinn erhöht sich«, erläutert Zimmermann das Prinzip der dynamischen Preisanpassung.Dies sichert dem Einzelhandel eine Gewinnmaximierung und reduziert gleichzeitig Ausschuss und Überproduktion. Die komplette Lieferkette profitiert von dem Informationsaustausch, der auch externe Daten einbezieht. »Wird etwa schönes Wetter prognostiziert, verkaufen Supermärkte viel Grillgut. Fleischproduzierende Betriebe können dementsprechend ihre Schlachtmenge anpassen und umgekehrt bei schlechtem Wetter die Produktion herunterfahren«, veranschaulicht Zimmermann die Idee des IT-Ökosystems. Auch der Endkunde würde profitieren: Bei schlechtem Wetter könnte der Preis von Grillfleisch frühzeitig heruntergesetzt werden, damit es nicht in den Regalen liegen bleibt. Derart konzipierte Prognosesysteme könnten ebenfalls über die Online-Plattform angeboten werden.
Derzeit befinden sich die Projektpartner in der Konzeptionierungsphase, erste Praxistests starten in Kürze.